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Abstract: This paper studies in a general framework the relative prices of perpetuities

with identical dividends and different bid-ask spreads. It establishes four sets of

conditions under which the liquidity premium is always positive (i.e., an asset with

smaller spread always commands a higher price). To show that the liquidity premium is

not necessarily positive, the paper presents two examples of general equilibrium in which

the liquidity premium is sometimes negative. The paper also establishes four sets of

conditions under which the price-spread relation is convex and uses results on asset price

bubbles to establish liquidity premium bounds.
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When two assets have the same dividend patterns but different levels of

transaction costs, it appears the asset with lower bid-ask spread (greater liquidity) is likely

to command a higher price. A general analysis of this issue, however, seems to be

lacking. A number of authors establish negative price-spread relations (i.e., positive

liquidity premia) under special assumptions. Amihud and Mendelson (1986), who present

results in terms of returns rather than prices, in effect prove that the buying (ask) price is a

decreasing and convex function of the bid-ask spread. Their assumptions include the

following: agents enter the market following a Poisson distribution, the duration of their

stay in the market follows an exponential distribution, the asset prices are constant over

time, and no investor short sells assets. The empirical studies by Amihud and Mendelson

(1986, 1991) generally confirm their theoretical findings. Kane (1994) further specializes

Amihud and Mendelson (1986) in order to find a closed form solution. Using the

techniques of Lucas (1978), Aiyagari and Gertler (1991) establish a return-spread relation

for a Markovian steady state equilibrium in which asset prices are constant over time.

Their assumptions (besides the constancy of prices) include: there are only two assets,

one asset has no transaction costs, assets can not be sold short, and the dividend of each

asset is constant over time. Vayanos (1998) and Vayanos and Vila (1998) study the

stationary equilibrium of overlapping generations models in which agents are identical in

preferences and endowments and birth and death rates are equal and constant over time.

The special assumptions in these studies make it possible for interesting

comparative static-type results to be derived. However, they also make it difficult for us
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to fathom the robustness of the conclusions. In particular, it remains unclear whether a

more liquid asset must always command a higher price under less restrictive assumptions.

In this paper, we analyze the price-spread relation in a general discrete-time,

infinite-horizon setting. We model the information structure by a tree, each node of which

represents a state of the world. We allow only a finite number of nodes on each date. We

also assume that agents have finite lives. Other than these restrictions, our model is very

general. We place no restriction on the birth and death patterns of agents. No utility

function is used except in examples, and the only restriction on preferences is that they be

strictly increasing. The number of assets is arbitrary. The dividends are also arbitrary,

except that the assets whose price-spread relations are under investigation are assumed to

have identical dividends.

Here is a synopsis of our analysis. We assume there exist two perpetuities, which

we call assets A and B, that have identical dividends. Let α(sr) and β(sr) be their

percentage bid-ask spreads at sr, a generic node on date r. We assume that 0 < α(sr) <

β(sr) < 1 at every node, or that asset A is unambiguously more liquid than asset B. Asset

B has positive (though not necessarily constant) supply. Let qA(sr) and qB(sr) be the

strictly positive buying prices of the two assets at sr. Their selling (bid) prices at sr are

then qA(sr)[1 - α(sr)] and qB(sr)[1 - β(sr)]. We will focus on the price ratio k(sr) ≡

qB(sr)/qA(sr). A positive (negative) liquidity premium at sr corresponds to k(sr) < 1 (k(sr) >

1). In Section I, we establish four theorems that ensure the global positivity of liquidity

premium under different conditions. Theorem 1A shows that k < 1 at every node in any

equilibrium in which k is constant. Theorem 2A shows that if α(sr) and β(sr) satisfy a
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mild bounding condition, k(sr) < 1 at every node in any equilibrium in which k has a

uniform upper bound and the value of k at any node continues to prevail at at least one

immediate successor node. This theorem covers many Markovian equilibria. Theorem 3A

shows that if α(sr) and β(sr) satisfy a mild bounding condition and all agents have one-

period investment horizons for asset B, k(sr) < 1 at every node in any equilibrium in

which k has a uniform upper bound. Theorem 4A shows that if α(sr) and β(sr) satisfy a

mild bounding condition, k(sr) < 1 at every node at which asset B is traded in any

equilibrium in which asset B is never sold short (either by choice or due to short-sale

constraint) and k has a uniform upper bound. Each of these theorems also has a twin that

establishes the convexity of the price-spread relation, for which the existence of a third

perpetuity with the same dividends as assets A and B is assumed.

In establishing these theorems, we use a combination of optimality and general

equilibrium arguments. To facilitate exposition, we describe a procedure to decompose

the asset trades by a finitely lived agent into a finite number of trade pairs. Our

arguments resemble the familiar arbitrage arguments in that all they require about

preferences is that they be strictly increasing. However, out of a reluctance to specify the

assets in the economy in more detail than necessary, our arguments are not based on

examining economy-wide opportunities. Instead, we focus on only a handful of assets and

make full use of the assumption that they have identical dividends.

Section I does not explain why an equilibrium satisfying the conditions of the

theorems therein is natural. Section II uses results in Yu (1998, Essay 2) to partially

address this issue. According to Yu (1998), in any equilibrium in which the aggregate
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endowment of the economy has a finite present value under some state price process, the

fundamental value of any asset with positive supply under this state price process must

fall into the interval delineated by its buying and selling prices. We show that this result

implies boundedness of k. It also gives rise to an upper bound for the liquidity premium

of asset A.

Having described occasions in which there must be a positive liquidity premium,

we give two examples of negative liquidity premium in Section III. In the examples, all

the conditions of Theorem 2A are satisfied except that the value of k at some node does

not prevail at an immediate successor, and all the conditions of Theorem 3A are satisfied

except that there exist agents with two-period investment horizons for asset B. We

explain through these examples why behavior that leads to negative liquidity premium

can be rational. We also use slightly modified versions of these examples to illustrate

Theorem 4A and show that, when asset B is never sold short, the liquidity premium can

be negative when asset B is not traded. Section IV concludes.

I. Sufficient Conditions for Positive Liquidity Premium

We consider an infinite-horizon economy with sequential trading and model

uncertainty by an information tree, a generic node of which on date r is denoted by sr.

Each node represents a state of the world and has a unique immediate predecessor (with

the exception of s0, which has no predecessor) and a finite number of immediate

successors. We use st|sr to indicate that st belongs to the subtree starting at sr. That is, st|sr

means either st = sr or st is a (not necessarily immediate) successor of sr. Agents strictly

prefer more consumption over less at each node at which they live. An agent that lives at
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some node sr must live either at all the immediate successors of sr (so sr is not a terminal

node) or at none them (so sr is a terminal node). The life spans of agents have a finite

uniform upper bound L. At each of its terminal nodes, an agent must liquidate all its asset

holdings (sell the assets held in long positions and buy assets to cover up short positions)

and the liquidation proceeds must be nonnegative. Consumption at any node must be

nonnegative, but agents can borrow as much as they want at all non-terminal nodes.

Agents may receive endowments of goods at the nodes at which they live, but there are

asset endowments only at s0.

Suppose there are two competitively traded perpetuities A and B that pay identical

nonnegative dividends. Asset B has positive supply at every node. Let α(sr) and β(sr) be

the percentage bid-ask spreads of assets A and B at sr. We assume that 0 < α(sr) < β(sr) <

1 for any sr, or that asset A is unambiguously more liquid. Let qA(sr) and qB(sr) be the

strictly positive buying prices of the two assets at sr. Their selling prices at sr are then

qA(sr)[1 - α(sr)] and qB(sr)[1 - β(sr)]. Short selling of assets A and B may or may not be

allowed.

To facilitate exposition, we describe a “first in, first out” procedure to decompose

the trades in asset B by some agent h not endowed with asset B into a finite number of

trade pairs. Given agent h’s finite life span and the liquidation requirement, its purchase

and sale of asset B must cancel each other over its lifetime. Suppose agent h does not

trade in asset B at any of the predecessors of some node sR and makes a purchase at sR,

creating a long position. We associate all its sales of asset B at the successors of sR with

the purchase at sR until that purchase is canceled. Let sT be a successor of sR where a sale
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completes the canceling of the purchase at sR. If there are purchases of asset B between sR

and sT, we associate the sale at sT not used up to cancel the purchase at sR and all the sales

in asset B at the successors of sT with the purchase at the earliest node after sR until that

purchase is also canceled, and proceed to cancel the next purchase if there is one. If there

is no purchase of asset B between sR and sT and the sale at sT is not completely used up to

cancel the purchase at sR, we associate all the purchases at the successors of sT with the

unused sale at sT until that sale is canceled. If there is no purchase of asset B between sR

and sT and the sale at sT is completely used up to cancel the purchase at sR, the immediate

successors of sT begin with a zero position in asset B and we can start the association

scheme anew. Treating purchases and sales symmetrically, we can use the above

procedure to uniquely assign all of agent h’s purchases and sales of asset B to a finite

number of trade associations. Each such association is composed of a purchase (sale) at

some node sr and sales (purchases) at the successors of sr such that the total sales

(purchases) along each branch (string of nodes with one for each date) starting at sr is

equal to the purchase (sale) at sr. By slicing the initial purchase (sale) of a trade

association sufficiently finely, we can further decompose each association into a finite

number of trade pairs. Each such pair P is composed of a purchase (sale) at some node sr

and an equal sale (purchase) at each of the nodes in a successor set X(P). The set X(P)

satisfies two conditions: (1) each node in X(P) is a successor of sr, and (2) each of the

terminal nodes for agent h that is a successor of sr is either an element of X(P) or a

successor of exactly one node in X(P).

Trade pairs (as well as trade associations) are of two types: buy-and-then-sell, and

sell-and-then-buy. There is some arbitrariness on how a trade association is decomposed
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into trade pairs, but all the pairs from the decomposition of a buy-sell (sell-buy)

association are always of the buy-sell (sell-buy) type. Obviously, an agent not endowed

with asset B never holds a short (long) position in asset B if and only if all its trade pairs

for asset B are of the buy-sell (sell-buy) type. Once the decomposition into trade pairs is

complete, we can examine an agent’s trades in asset B one trade pair at a time. Forgoing a

pair will never cause a violation of the requirement that all assets be liquidated at each of

an agent’s terminal nodes.

We are ready to present sufficient conditions for k < 1 at every node.

 A. Constant Price Ratio

Theorem 1A: In any equilibrium in which qB(sr) = kqA(sr) at any sr, where k is

some constant, it must be that k < 1.

Proof: We assert that, with k ≥ 1, no agent born after date 0 (and is therefore not

endowed with assets) will have a buy-sell pair for asset B. Suppose instead some such

agent h has a trade pair P that represents buying a unit of asset B at sr and selling it at

each of the nodes in the successor set X(P). Consider P*, an alternative to P. P*

represents buying k units of asset A at sr and selling them at each node in X(P). The cost

of P* at sr is kqA(sr) = qB(sr), the same as the cost of P. At each node between sr and X(P)

and each node in X(P), P* generates more or equal dividend in comparison with P. Let st

be a generic node in X(P). The selling proceeds of P at st is [1 - β(st)]qB(st), while the

selling proceeds of P* at st is k[1 - α(st)]qA(st) = [1 - α(st)]qB(st), a greater amount.

Therefore, with k ≥ 1, agent h can do strictly better by substituting P* for P, and so P or

any other buy-sell pair is inconsistent with optimization, and agent h or any other agent
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born after date 0 will never hold a long position in asset B. Consequently, given the

positive supply of asset B, the market for asset B can not clear at any node on date L or

any later date, where all the agents alive are born after date 0. Therefore, only k < 1 can

be consistent with equilibrium. Q.E.D.

Because assets A and B are an arbitrary pair, Theorem 1A, like the theorems we

will develop later, actually establishes a general decreasing relation between the buying

price and the bid-ask spread. Trivially, qA > qB implies (1 - α)qA > (1 - β)qB, or there is

also a decreasing relation between the selling price and the bid-ask spread. Note that, like

Theorems 1B, 2 and 3 below, Theorem 1A is valid regardless of whether short selling

asset A or B is allowed.

We now turn to the curvature of the price-spread relation. Suppose there is

another perpetuity C that pays identical dividends as assets A and B. Asset C has positive

supply at every node. Its bid-ask spread γ(sr) satisfies β(sr) < γ(sr) < 1 at any sr, and its

buying price qC is strictly positive. At each node, define q and q* as:

     q = 
1

γ α−
[(γ - β)qA + (β - α)qC],   q* = 

1

γ α−
[(γ - β)(1 - α)qA + (β - α)(1 - γ)qC]   (1)

Trivially, q > qB indicates a convex relation between the buying price and the bid-ask

spread, and q* > (1 - β)qB indicates a convex relation between the selling price and the

bid-ask spread.

Theorem 1B: Suppose α, β and γ are constants. Then q > qB and q* > (1 - β)qB

at any node in any equilibrium with constant price ratios for assets A, B and C.
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Proof: According to Theorem 1A, qA > qB > qC at any node. Define m by qB =

mq. Given the constant price ratios and the constancy of α, β and γ, m is a constant. We

assert that, with m ≥ 1, no agent born after date 0 will have a buy-sell pair for asset B.

Suppose instead some such agent h has a trade pair P that represents buying a unit of asset

B at sr and selling it at each of the nodes in a successor set X(P). Consider P**, an

alternative to P. P** represents buying m
γ β
γ α

−
−

 unit of asset A and m
β α
γ α

−
−

 unit of asset

C at sr and selling them at each node in X(P). The cost of P** at sr is m
γ β
γ α

−
−

qA(sr) +

m
β α
γ α

−
−

qC(sr) = mq(sr) = qB(sr), the same as the cost of P. The total units in P** is

m
γ β
γ α

−
−

 + m
β α
γ α

−
−

 = m ≥ 1. At each node between sr and X(P) and each node in X(P),

P** generates more or equal dividend in comparison with P. Let st be a generic node in

X(P). The selling proceeds of P at st is (1 - β)qB(st). The selling proceeds of P** at st is

m
γ β
γ α

−
−

(1 - α)qA(st) + m
β α
γ α

−
−

(1 - γ)qC(st). We have:

m
γ β
γ α

−
−

(1 - α)qA(st) + m
β α
γ α

−
−

(1 - γ)qC(st)

=
q s

q s
B

t

t

( )

( )
[

γ β
γ α

−
−

(1 - β)qA(st) +
γ β
γ α

−
−

(β - α)qA(st) +
β α
γ α

−
−

(1 - β)qC(st) -
β α
γ α

−
−

(γ - β)qC(st)]

= (1 - β)qB(st) + 
q s

q s
B

t

t

( )

( )

( )( )γ β β α
γ α

− −
−

[qA(st) - qC(st)] > (1 - β)qB(st)      (2)
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Therefore, with m ≥ 1, agent h can do strictly better by substituting P** for P, and

so P or any other buy-sell pair is inconsistent with equilibrium, and agent h or any other

agent born after date 0 will never hold a long position in asset B. Consequently, given the

positive supply of asset B, only m < 1 or q > qB at every node can be consistent with

equilibrium. Furthermore, from (1) and the result that q(sr) > qB(sr) for any sr, we have:

q*(sr) = (1 - β)
1

γ α−
[(γ - β)

1

1

−
−

α
β

qA(sr) + (β - α)
1

1

−
−

γ
β

qC(sr)]

= (1 - β)
1

γ α−
 [(γ - β)qA(sr) + (γ - β)

β α
β

−
−1

qA(sr) + (β - α)qC(sr) - (β - α)
γ β

β
−
−1

qC(sr)]

= (1 - β)q(sr) + 
( )( )γ β β α

γ α
− −

−
[qA(sr) - qC(sr)] > (1 - β)qB(sr)

(3)

Q.E.D.

By establishing the negativity and convexity of the price-spread relation with

arbitrary preferences, endowments and asset specifications, Theorem 1 shows that the

same kind of relation in Amihud and Mendelson (1986) is the direct consequence of their

constant price assumption and not the result of other special features.

B. Constant Price Ratio on Branches

Though more general than the assumption of constant prices, the assumption of

constant price ratio is also quite special. We now relax this assumption somewhat and

assume instead that the price ratio k has a uniform upper bound and that the value of k at

any node will continue to prevail at at least one immediate successor node.

Theorem 2A: Suppose the bid-ask spreads satisfy the uniform bound
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ρ[1 - β(sr)] ≤ 1 - α(sr)      (4)

for any sr, where ρ > 1 is a constant. Then k < 1 at any node in any equilibrium in which

the value of k at any sr will continue to prevail at at least one immediate successor of sr

and k(sr) ≤ K for any sr, where K is some constant.

Proof: Suppose instead qA(sr) ≤ qB(sr) or k(sr) ≥ 1 at some node sr. Then by

assumption the ratio of qB over qA is equal to k(sr) at all the nodes on some branch

starting at sr. Let sR be a node on this branch that is at least L dates ahead of sr. Given the

positive supply of asset B, some agent h must hold a long position of asset B at sR. It must

then have a trade pair P that represents buying a unit of asset B at some node sτ between sr

and sR and selling it at each node in a successor set X(P). Noting that k(sτ) = k(sr) by

construction, it is also easy to show that, if

1

1

−
−

β
α

( )

( )

s

s

t

t k(st) < k(sr)      (5)

 at each st∈X(P), agent h could do strictly better by replacing P by P*, which represents

buying k(sr) units of asset A at sτ and selling them at each node in X(P). (Note that, given

the variable price ratio, this replacement may lower the portfolio liquidation value of

agent h at some nodes in X(P) or between sτ and X(P). It is for this reason that we allow

unlimited borrowing at all non-terminal nodes.) Therefore, there must be some st∈X(P) at

which

1

1

−
−

β
α

( )

( )

s

s

t

t k(st) ≥ k(sr)     (6a)

Using (4) in (6a), we get:
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        k(st) ≥ ρ k(sr)     (6b)

(6b) shows that, if k(sr) ≥ 1 at some node sr, there would exist some successor st of sr at

which k(st) is at least ρ times k(sr). But then the ratio of qB over qA is equal to k(st) at all

the nodes on some branch starting at st. Repeating this argument n times for some

sufficiently large n, we can establish that there would exist some successor sT of sr at

which

  k(sT) ≥ ρn k(sr) > K     (6c)

But (6c) contradicts the premise that K is the uniform upper bound of k. Therefore, in any

equilibrium satisfying the conditions of the theorem, it must be that k < 1 or qA > qB at all

nodes. Q.E.D.

Theorem 2A relies on two critical assumptions. The first is the existence of a

uniform upper bound for k. In section 4, we will use results in Yu (1998) to explain why

the existence of such a bound is quite natural. The second critical assumption is that the

value of k at any node continues to prevail at at least one immediate successor. We have

no similar defense for this assumption. We do observe, however, that the assumption is

satisfied by any Markovian equilibrium in which k can take on only a finite number of

values and the diagonal elements of the transition matrix for k are always all positive. (k

can take on only a finite number of values if asset prices are quoted in discrete

increments, which is usually the case in the real world, and are bounded.)

The theorem below is in parallel with Theorem 1B.

Theorem 2B: Suppose α, β and γ are constants. Then  q > qB and q* > (1 - β)qB

at any node in any equilibrium in which the ratio of qB over qA and the ratio of qC over qB
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at any sr will both continue to prevail at at least one immediate successor of sr, both

ratios are uniformly bounded from above, and the ratio between qC and qA is uniformly

bounded away from 1.

The assumption that the ratio between qC and qA is uniformly bounded away from

1 plays a role similar to the bounding condition (4). The asset bundle composed of 
γ β
γ α

−
−

unit of asset A and 
β α
γ α

−
−

 unit of asset C is more liquid than asset B. However, the

equivalent spread of the asset bundle may not be bounded away from β unless the ratio

between qC and qA is uniformly bounded away from 1.

Proof of Theorem 2B: According to Theorem 2A, qA > qB > qC at any node.

Define m(sr) by qB(sr) = m(sr)q(sr). By the definition of q(sr) in (1), m(sr) is determined

entirely by the ratios among qA(sr), qB(sr) and qC(sr), and boundedness of the price ratios

implies boundedness of m. Suppose qB(sr) ≥ q(sr) or m(sr) ≥ 1 at some sr. Then by

assumption the value of m is equal to m(sr) at all the nodes on some branch starting at sr.

Let sR be a node on this branch that is at least L dates ahead of sr. Given the positive

supply of asset B, some agent h must hold a long position of asset B at sR. It must then

have a trade pair P that represents buying a unit of asset B at some node sτ between sr and

sR and selling it at each node in a set X(P). Noting that m(sτ) = m(sr) by construction, it is

also easy to show that there must be some st∈X(P) at which

m(sr)
γ β
γ α

−
−

(1 - α)qA(st) + m(sr)
β α
γ α

−
−

(1 - γ)qC(st) ≤ (1 - β)qB(st)      (7)
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If (7) were not true for any st∈X(P), P would be strictly dominated by P**, which

represents buying m(sr)
γ β
γ α

−
−

 unit of asset A and m(sr)
β α
γ α

−
−

 unit of asset C at sτ and

selling them at each node in X(P). By the assumption that the ratio between qC and qA is

uniformly bounded away from 1, there exists some constant δ > 0 such that qA/qc ≥ 1 + δ

at any node. Noting that qB(st) = m(st)q(st), from (7) and the definition of q in (1) we get:

m s

m s

t

r

( )

( )
 ≥ 

( )( ) ( ) ( )( ) ( )

( )[( ) ( ) ( ) ( )]

γ β α β α γ
β γ β β α

− − + − −
− − + −

1 1

1

q s q s

q s q s
A

t
C

t

A
t

C
t

          = 1 + 
( )( )[ ( ) / ( ) ]

( )[( ) ( ) / ( ) ]

γ β β α
β γ β β α
− − −

− − + −
q s q s

q s q s
A

t
C

t

A
t

C
t

1

1
 ≥ 1 + 

( )( )

( )( )

γ β β α δ
β γ α

− −
− −1

     (8)

(8) shows that, if m(sr) ≥ 1 at some node sr, there would exist some successor st of sr at

which m(st) is at least 1 + 
( )( )

( )( )

γ β β α δ
β γ α

− −
− −1

 times m(sr). Repeating this argument n times

for some sufficiently large n, we would find some successor sT of sr at which m is greater

than any pre-assigned bound. Q.E.D.

C. Short Investment Horizons

Theorem 3A: Suppose the bid-ask spreads satisfy the uniform bound in (4) and

all agents have one-period investment horizons for asset B. Then k < 1 at any node in any

equilibrium in which k(sr) ≤ K at any sr, where K is some constant.

Proof: Suppose k ≥ 1 at sr. Because asset B has positive supply, some agents must

have long positions of asset B at the end of sr trading. Because they have one-period

investment horizons for asset B, these agents must have trade pairs that represent buying

asset B at sr and selling it at the immediate successors of sr. By arguments similar to those
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in the proof of Theorem 2A, k must increase by a factor of at least ρ > 1 between sr and

some date r + 1 node sr+1|sr. Some other agents may have trade pairs that represent selling

asset B short at sr, but the positive supply of asset B dictates that the sum of the short

positions at sr is smaller than the sum of the long positions. When the agents with long

positions sell their holdings at sr+1, therefore, some corresponding purchases at sr+1 must

belong to trade pairs between sr+1 and its immediate successors. The fact that some agents

choose to create a long position in asset B at sr+1 then implies that k must increase by a

factor of at least ρ > 1 between sr+1 and some date r + 2 node sr+2|sr+1. Continuation of this

reasoning leads to unboundedness of k. Q.E.D.

The theorem below is in parallel with Theorems 1B and 2B. Its proof is obvious

and omitted.

Theorem 3B: Suppose α, β and γ are constants and all agents have one-period

investment horizons for asset B. Then q > qB and q* > (1 - β)qB at any node in any

equilibrium in which both the ratio of qB over qA and the ratio of qC over qB are

uniformly bounded from above and the ratio between qC and qA is uniformly bounded

away from 1.

 D. No Short Selling of the Less Liquid Asset

Theorem 4A: Suppose the bid-ask spreads satisfy the uniform bound in (4). Then

k < 1 at any node at which asset B is traded in any equilibrium in which asset B is never

sold short and k(sr) ≤ K for any sr, where K is some constant.

Proof: Suppose k ≥ 1 at some node sr where asset B is traded. Because asset B is

never sold short, the buyer of asset B must have a trade pair P that represents buying a
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unit of asset B at sr and selling it at a successor set X(P). By arguments similar to those in

the proof of Theorem 2A, k must increase by a factor of at least ρ > 1 between sr and

some st in X(P). But st is another node at which asset B is traded, and so repeating the

above arguments leads to the unboundedness of k. Q.E.D.

Theorem 4A is valid in any equilibrium in which asset B is never sold short,

regardless whether the absence of short sale is by choice or the result of short-sale

constraint. The theorem below is in parallel with Theorems 1B, 2B and 3B. Its proof is

obvious and omitted.

Theorem 4B: Suppose α, β and γ are constants. Then q > qB and q* > (1 - β)qB

at any node at which asset B is traded in any equilibrium in which assets B and C are

never sold short, both the ratio of qB over qA and the ratio of qC over qB are uniformly

bounded from above, and the ratio between qC and qA is uniformly bounded away from 1.

II. Bounds on the Size of the Liquidity Premium

In this section, we use results in Yu (1998, Essay 2) to explain why the uniform

upper bound for k in Theorems 2, 3 and 4 is quite natural and to establish a simple bound

for the liquidity premium. Following Santos and Woodford (1997), Yu (1998) defines

present and fundamental values in terms of state price processes. Let vω(s
r, a) be the

present value of the aggregate endowment ω at sr under state price process {a}. By

Theorem 5 of Yu (1998, Essay 2), in any equilibrium in which vω(s
r, a) is finite, the

fundamental value of any asset with positive supply under {a} must fall into the interval

delineated by its buying and selling prices. This indicates the absence of bubbles.
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Because A and B have identical dividends, they must have the same fundamental

value at any sr under any {a}. In this section, we assume that, like asset B, asset A also

has positive supply at every node. Let f(sr, a) be the common fundamental value at sr

under {a}. In the absence of bubbles on assets A and B, we have:

qB(sr) ≥ f(sr, a) ≥ [1 - β(sr)]qB(sr) (9a)

qA(sr) ≥ f(sr, a) ≥ [1 - α(sr)]qA(sr) (9b)

Combining (9a) and (9b), we get:

1 - α(sr) ≤ k(sr) ≡ 
q s

q s
B

r

A
r

( )

( )
 ≤ 

1

1− β( )sr (10)

The second part of (10) is a bound on how negative can the liquidity premium be. If β(sr)

is bounded away from 1, then (10) gives a uniform upper bound for k. Thus the existence

of a uniform upper bound is linked to the finiteness of vω(s
r, a). In addition, the first part

of (10) gives a lower bound for k or an upper bound for a positive liquidity premium. For

a more complete discussion, see Yu (1998, Essay 4).

III. Examples of Negative Liquidity Premium

Like the negatively sloped demand curve, positive liquidity premium is the norm.

At the same time, as our examples will show, just as Giffen goods are a theoretical

possibility in the price theory, so is negative liquidity premium in a finance theory based

on optimization and market clearing. In each example, the economy has two perpetuities

with constant percentage bid-ask spreads α and β satisfying 0 < α < β < 1. These are the

only assets, and they can be sold short. Each asset has a constant supply of 1 and pays a
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constant dividend d > 0 on each node. There is a single numeraire good at each node.

Utility functions are twice differentiable, strictly increasing and strictly concave.

A. Example 1: Deterministic Periodicity

Consider a deterministic economy with dates t = 0, 1, …. One each even date, an

even agent is born. It lives on three dates, and its utility function is:

  U(c) = U1(c1) + U2(c2)+ U3(c3)    (11a)

On each odd date, an odd three-date agent is born, with utility function

    U*(c*) = U*1(c*1) + U*2(c*2) + U*3(c*3)    (11b)

The good endowments are ω1, ω2, ω3 and ω* 1, ω* 2, ω* 3. In addition, there are two extra

agents alive at t = 0. One is endowed with one unit of asset A and two units of asset B and

lives only at t = 0. The other is endowed with - 1 unit of asset B and lives on dates t = 0

and t = 1, with utility function and good endowments exactly like that of an odd agent on

its last two dates. The buying prices of the assets are qA and qB on even dates and qA* and

qB* on odd dates. We assume qA > qB and qA* < qB*, or that the liquidity premium is

positive on even dates and negative on odd dates.

We consider the following trading pattern. An even agent buys one unit of asset A

and two units of asset B on its first date and sells them on its third (last) date. It does not

trade assets on its second date. An odd agent does not trade in asset A. It does not trade

asset B on its second date. On its first date, it sells one unit of asset B short. On its third

date, it buys one unit of asset B to cover up its short position. Obviously, this trading

pattern implies market clearing. It also implies that even (odd) agents trade only with

even (odd) agents. We use ui to denote Ui’s first derivative. The trading pattern is optimal

if and only if the following conditions are satisfied.
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u1qA = u2d + u3[(1 - α)qA + d]    (12a)

u1qB = u2d + u3[(1 - β)qB + d]    (12b)

   u1qA ≥ u2[(1 - α)qA* + d]    (12c)

u1(1 - α)qA ≤ u2(qA* + d)   (redundant given (12a) and (12g))    (12d)

   u1qB ≥ u2[(1 - β)qB* + d]    (12e)

u1(1 - β)qB ≤ u2(qB* + d)   (redundant given (12d))    (12f)

   u2qA* ≥ u3[(1 - α)qA + d]    (12g)

u2(1 - α)qA* ≤ u3(qA + d)   (redundant given (12a) and (12c))    (12h)

u2qB* ≥ u3[(1 - β)qB + d]   (redundant given (12g))    (12i)

u2(1 - β)qB* ≤ u3(qB + d)   (redundant given (12b) and (12e))    (12j)

c1 = ω1 - qA - 2qB,   c2 = ω2 + 3d,   c3 = ω3 + qA(1 - α) + 2qB(1 - β) + 3d    (12k)

u*1qA* ≥ u*2d + u*3[(1 - α)qA* + d]    (13a)

u*1(1 - α)qA* ≤ u*2d + u*3(qA* + d)    (13b)

u*1(1 - β)qB* = u*2d + u*3(qB* + d)    (13c)

     u*1qA* ≥ u*2[(1 - α)qA + d]    (13d)

    u*1(1 - α)qA* ≤ u*2(qA + d)   (redundant given (13b), (13c) and (13g))    (13e)

      u*1qB* ≥ u*2[(1 - β)qB + d]   (redundant given (13d))    (13f)

     u*1(1 - β)qB* ≤ u*2(qB + d)

(13g)

     u*2qA ≥ u*3[(1 - α)qA* + d]    (13h)
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     u*2(1 - α)qA ≤ u*3(qA* + d)    (13i)

         u*2qB ≥ u*3[(1 - β)qB* + d]   (redundant given (13c) and (13g))    (13j)

        u*2(1 - β)qB ≤ u*3(qB* + d)   (redundant given (13i))    (13k)

c*1 = ω*1 + (1 - β)qB*,   c*2 = ω*2 - d,   c*3 = ω*3 - qB* - d              (13l)

(12a) and (12b) ensure that buying more or less than one unit of asset A or two

units of asset B on the first date and selling it on the third date will not raise an even

agent’s total utility. (12c) and (12d) ensure that buying or selling asset A on the first date

and liquidating it on the second date will not raise an even agent’s total utility. (12e) and

(12f) are the asset B counterparts of (12c) and (12d). (12g) and (12h) ensure that buying

or selling asset A on the second date and liquidating it on the third date will not raise an

even agent’s total utility. (12i) and (12j) are the asset B counterparts of (12g) and (12h).

(13) contains parallel conditions for an odd agent.

By adjusting utility functions and good endowments, we can make the u’s attain

any positive values that we want. Therefore, to construct a desired equilibrium, all we

need to do is to find a set of strictly positive values for α, β, d, the u’s and the q’s with α

< β < 1, qA > qB and qA* < qB* that satisfy conditions (12a) through (12i) and (13a)

through (13k). It is straightforward to verify that α = 1/5, β = 1/4, d = 1, qA = 21/8, qB =

5/2, qA* = 21/11, qB* = 7/3, u1 = 1, u2 = 65/72, u3 = 5/9, u*1 = 1, u*2 = 231/452 and u*3 =

42/113 represent an equilibrium.

The behavior of all the agents in this example is perfectly rational. An even agent

purchases assets on its first date to enhance its consumption later in life, and asset prices

are such that an even agent finds buying assets A and B equally attractive at the margin.
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On its second date, an even agent has the option of selling the assets. Because the prices

of either asset is not very high on the second date and the third date marginal utility is

substantial, an even agent finds it preferable to hold on to both assets and sell them on the

third date. The behavior of an odd agent can be explained along similar lines.

B. Example 2: Stochastic Single Occurrence

The periodicity in example 1 is not needed for the existence of a negative liquidity

premium. In this subsection, we construct a stochastic example in which negative

liquidity premium occurs at a single node. Consider an economy that branches only on t =

2. For each date t ≥ 2, there are two nodes: λt and µt.

               λ2           λ3          λ4         …

   t = 0         t = 1

   µ2           µ3          µ4         …

There are three types of typical agents. Each typical agent lives over two nodes on

two dates, has no asset endowment, purchases a unit of each asset on its first date and

sells off assets on its second (last) date. Agents within each type have the same time-

separable utility function and good endowments. On t = 0, a type 1 agent is born. On each

λ node, a type λ agent is born. On each µ node from t = 3 onward, a type µ agent is born.

Let qA and qB be the constant asset buying prices at t = 0 and t = 1. It is easy to

verify that the type 1 agent’s asset transactions are optimal under some utility function

and good endowments if

q d

q
A

A

( )1− +α
 = 

q d

q
B

B

( )1− +β
,   or   d(qA - qB) = qAqB(β - α)    (14)
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(14) implies qA > qB, or that the liquidity premium is positive. Let qA
λ and qB

λ (qA
µ and

qB
µ) be the constant buying prices on the λ nodes (µ nodes from t = 3 onward). It is also

easy to verify that the asset transactions of type λ (µ) agents can be optimal if qA
λ and qB

λ

(qA
µ and qB

µ) satisfy (14).

Only the type 1 agent lives between t = 0 and t = 1, only λ agents live at the λ

nodes from t = 3 on, and only µ agents live at µ nodes from t = 4 on. An extra agent is

born and lives only on t = 0 and is endowed with one unit of each asset. With the three

sets of constant prices satisfying (14), the liquidity premium is positive at every node

other than µ2, and, with the utility functions and good endowments that guarantee the

optimality of all the typical agents, asset demands and asset supplies are equated on t = 0,

λ3 and any node from date t = 4 onward. In addition, the type 1 agent wants to sell one

unit of each asset on t = 1, and the typical agents born on λ2 and µ3 want to buy one unit

of each asset on their birth nodes.

Three agents (x, y and z) are born on t = 1. Agent x lives on four nodes: t = 1, λ2,

µ2 and µ3. Agents y and z live on three nodes: t = 1, λ2 and µ2. There is no birth on µ2.

Suppose agent x buys one unit of each asset on t = 1 and sells off assets on λ2 and µ3,

agent y buys one unit of asset B on t = 1 and sells it off on t = 2 nodes, agent z sells one

unit of asset B on t = 1 and buys it back on t = 2 nodes, and agents y and z do not trade in

asset A. Clearly, this trading pattern implies market clearing. Let qA* and qB* be the asset

prices at µ2. Our task is to show that the trading pattern is consistent with optimization by
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agents x, y and z under a set of positive values for α, β, d, the marginal utilities and the

asset prices with qA* < qB*.

Agent x’s behavior is optimal if and only if the following conditions are satisfied:

ux,1qA = ux,λ2[(1 - α)qA
λ + d] + ux,µ2d + ux,µ3[(1 - α)qA

µ + d]    (15a)

ux,1qB = ux,λ2[(1 - β)qB
λ + d] + ux,µ2d + ux,µ3[(1 - β)qB

µ + d]    (15b)

      ux,1qA ≥ ux,λ2[(1 - α)qA
λ + d] + ux,µ2[(1 - α)qA* + d]    (15c)

   ux,1(1 - α)qA ≤ ux,λ2(qA
λ + d) + ux,µ2[qA* + d]    (15d)

      ux,1qB ≥ ux,λ2[(1 - β)qB
λ + d] + ux,µ2[(1 - β)qB* + d]

(15e)

ux,1(1 - β)qB ≤ ux,λ2(qB
λ + d) + ux,µ2[qB* + d]    (15f)

ux,µ2qA* ≥ ux,µ3[(1 - α)qA
µ + d]    (15g)

ux,µ2(1 - α)qA* ≤ ux,µ3(qA
µ + d)    (15h)

ux,µ2qB* ≥ ux,µ3[(1 - β)qB
µ + d]    (15i)

ux,µ2(1 - β)qB* ≤ ux,µ3(qB
µ + d)    (15j)

The expressions for consumption are not essential and are omitted here. (15a) and (15b)

ensure that buying more or less than one unit of either asset at t = 1 and selling it at λ2 and

µ3 will not raise total utility. (15c) and (15d) ensure that buying or selling asset A at t = 1

and liquidating it at λ2 and µ2 will not raise total utility. (15e) and (15f) are the asset B

counterparts of (15c) and (15d). (15g) and (15h) ensure that buying or selling asset A at

µ2 and liquidating it at µ3 will not raise total utility. (15i) and (15j) are the asset B

counterparts of (15g) and (15h).
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The optimization conditions for agents y and z are:

uy,1qA ≥ uy,λ2[(1 - α)qA
λ + d] + uy,µ2[(1 - α)qA* + d]    (16a)

     uy,1(1 - α)qA ≤ uy,λ2(qA
λ + d) + uy,µ2[qA* + d]    (16b)

uy,1qB = uy,λ2[(1 - β)qB
λ + d] + uy,µ2[(1 - β)qB* + d]    (16c)

uz,1qA ≥ uz,λ2[(1 - α)qA
λ + d] + uz,µ2[(1 - α)qA* + d]    (17a)

     uz,1(1 - α)qA ≤ uz,λ2(qA
λ + d) + uz,µ2[qA* + d]    (17b)

     uz,1(1 - β)qB = uz,λ2(qB
λ + d) + uz,µ2[qB* + d]    (17c)

It is straightforward to verify that α = 1/5, β = 1/4, d = 1, qA = 2, qB = 20/11, qA
λ = 5, qB

λ

= 4, qA* = 20/7, qB* = 3, qA
µ = 20/7, qB

µ = 5/2, ux,1 = uy,1 = uz,1 = 1, ux,λ2 =  1/660, ux,µ2 =

11/20, ux,µ3 = (14/55)(119/69) = 1666/3795, uy,λ2 = 1/44, uy,µ2 = 76/143, uz,λ2 =  1/4 and

uz,µ2 = 5/176 represent an equilibrium.

Agent x buys assets at t = 1 to enhance later consumption. Its marginal utility at µ2

is low, so it chooses not the sell assets at µ2. Agent y buys asset B at t = 1 to enhance later

consumption. It finds asset A not as attractive to buy as asset B, because it has high

marginal utility at µ2, where asset B can be sold at a higher price. Agent z short sells asset

B at t = 1 to enhance its consumption there. It finds asset A not as attractive to sell as

asset B, because it has low marginal utility at µ2, where covering asset B’s short position

is more costly.

C. Modifying the Examples to Illustrate Absence of Short Sales

If we take out all the odd agents in example 1 while keeping the asset prices and

the preferences and endowments of the even agents intact, the kind of even agent
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behavior described in that example continues to be both optimal and market clearing.

What we end up with is a new equilibrium in which the liquidity premium is negative on

all the odd dates. This does not contradict Theorem 4A, because asset B is not traded on

odd dates in our new equilibrium. Similarly, if we take out agents y and z in example 2,

we end up with a new equilibrium in which no agent ever short sells asset B and the

liquidity premium is positive at every node other than µ2, where asset B is not traded.

IV. Conclusion

This paper serves several purposes. By establishing four sets of sufficient

conditions, it shows that a positive liquidity premium and a convex price-spread relation

must occur in a variety of equilibrium settings. In particular, the positive liquidity

premium and the convex price-spread relation in Amihud and Mendelson (1986) is the

direct consequence of the constant price assumption and not the result of other special

features. The proofs of the sufficiency theorems demonstrate the fruitfulness of general

equilibrium arguments. The paper’s discussions of the implications of finite present value

of aggregate endowments establish a linkage between the liquidity premium and the

theory of asset price bubbles found in Yu (1998). Finally, through examples, the paper

shows how a negative liquidity premium can be consistent with optimization and market

clearing.
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